Projects

Videostudio

Actual projects

Enlarged view: main components

The EPT-hub offers support for teaching assistants (TAs) of introductory physics courses. So far, we provide TAs with our developed complete collections of high-quality teaching materials that support them directly with the preparation of their lessons. Additionally, hands-on seminars about teaching as well as didactical advice and additional teaching materials are offered to all TAs teaching introductory physics classes.  

Aims of the EPT-hub are:

  • Assure impactful exercise classes complying with the high standards of teaching at D-PHYS.
  • Guide TAs to prepare their classes more efficiently and successfully (saving time for scientific work and make teaching an enjoyable task).
  • Enable the exchange of teaching practices and experience amongst the TAs and ensure knowledge transfer.
  • Encourage social interaction between TAs and foster the development of their soft skills and confidence.

The EPT-hub (https://ept.ethz.ch) was created to support TAs of introductory physics courses in their teaching duties, in order to assure high-quality exercise classes for the students that foster efficient learning. Its establishment was encouraged by wishes of TAs to make exercise classes more interactive and engaging, which is a challenging task in the framework of the traditional system with exercise sheets.

The dedicated design of engaging activities and didactical materials which would nicely complement the problems from the sheets requires a lot of time and effort which TAs often cannot invest. For this purpose, the EPT-hub develops dedicated physics-teaching resources tailored to the introductory physics courses. Among others, these resources include activation techniques and group works, which have proven to be very successful regarding the for students’ learning experience and success during the exercise class. Such materials were practically absent before the appearance of the EPT-hub and are currently further under development. The EPT resources are complemented by training workshops where we help TAs to further practice their teaching-related skills.

CLASS

Students with non-physics majors often lack a motivational incentive in studying physics and they struggle in viewing physics as a valuable subject for their own discipline. To overcome these motivational issues, we have completely redesigned two compulsory calculus-based introductory physics lectures.

By making physics more accessible, we hope that students also change their attitudes and beliefs of learning physics. To that end, we are relying on external pageCLASS, the “Colorado Learning Attitudes about Science Survey” that we administered as a pre- and as a posttest.

In this project, we are seeking for evidence to what extent the redesigned physics lectures induce changes in the students’ attitudes of learning physics and how well we succeed in making the students think like a physicist.

DownloadResults (PDF, 636 KB)

SCALEUP

In Spring 2017, external pageGerald Feldman offered a pilot section of an introductory physics class at ETH Zürich that was using the external pageSCALE-UP collaborative group-learning flipped-classroom approach. We reconfigured a classroom with 9 hexagonal tables (2 groups per table), accommodating 54 students. Lecturing was reduced to a minimum. To enable class preparation and problem-solving practice, the online external pageMasteringPhysics system was used to offer pre-class “Warmups” and post-class homework assignments.

Now we are evaluating the effectiveness of this active-learning pedagogy by comparing student performance in the SCALE-UP section with a parallel lecture section. Our data are based on the external pageFCI , a mid-term exam, a final exam as well as a survey soliciting student feedback about their experience.

Evidence of teaching effectiveness: Flipping Large University Courses: How do student learning gains improve compared to lectures?

SET

The feedback from student evaluation of teaching (SET) is a major instrument to measure the degree of faculty achievements. Whereas the analysis of SET data mainly focuses on quantitative ratings, little is known about the impact of open written feedback that students provide in SET questionnaires.
In this project we combine quantitative results together with lexical evidence in order to provide some interpretative hints, on how to link written comments to the overall questionnaire results.

Results: external pageStudent Evaluation of Teaching (SET): Clues on how to interpret written feedback  

youtube video image

Based on a pilot project carried out in 2013, the Department of Physics at ETH Zurich now has provided equipment and space, where lecturers can produce tutorial videos in high quality at their own pace. Following a short introduction to the technical setup and some basic concepts on multimedia teaching, the lecturers can record their videos without assistance. A WolfVision desktop visualizer in combination with the Camtasia software package is the major component of the setting.

The production is limited to the “Writing Hand” format, which we consider being most efficient for our learning objectives. While the recording time is reduced to a bare minimum, lecturers can focus on content and on pedagogical design. This approach turns out to be attractive, as more lecturers are using the equipment and consequently gaining expertise in video design. Moreover, the resulting videos are highly appreciated by students, who confirm that this new tool supports their learning performance.

YouTube-Channel: external pageeduphys (search for “eduphys” in Youtube)

Evidence of teaching effectiveness: Video Analytics: when and how do students use tutorial videos?

exercise class

In a traditional university setting, large physics undergraduate lectures are supplemented with a set of small-scale exercise classes. All those tutorials have an identical instructional structure and their major aim is to support students in developing problem-solving skills by discussing weekly problem sets.

Students and teaching assistants, however, expressed diverse needs regarding the content and the activities of the exercise classes. Some students need more specific support when working on the exercises; some students need further explanations regarding the lecture content, etc.

Responding to those requests we decided to diversify the tutorials by applying the framework of differentiated instruction (Tomlinson&Allan, 2000).  According to a market model, based on offer and demand, tutorials with four different flavors are supplied:

  • classes with a focus on lecture content (micro-teaching),
  • classes with a focus on challenging topics (master class),
  • classes with a focus on scaffolding (hints for solutions, self-directed work),
  • classes with a focus on coaching (in-class work).

The market regulation is guaranteed by offering students the possibility to change flavors during the first four weeks. After this migration period, classes with less than five participants are abolished or regrouped. Teaching assistants with discontinued classes are appointed to support their colleagues by team teaching.

In autumn 2013 we introduced the exercise class market in three physics lectures addressing a total of more than 1’200 students. At the end of the term we carried out an acceptance study based on an online survey and on interviews.  The results from the study revealed that the market is highly appreciated by students and by teaching assistants. The (not compulsory) attendance of the tutorials is much higher than expected and the distribution of the different flavors is not uniform for the three lectures. Offering students the possibility to choose among different flavors turned out to be a major asset of the setting. Furthermore personal choice can positively affect a learner's motivation (Katz, 2006). On the other hand, organizational flexibility and continuous adaptation are the major challenges.

Up to now, differentiated instruction has only been sparsely used in higher education settings (Lightweis, 2013). With our presentation we share an example of how differentiated instruction can easily be implemented in undergraduate tutorials and we discuss further results from our study.  Based on the success of the pilot phase, more of our physics courses now have adopted the exercise class market that we are continuously refining. We are also planning to extend the framework to other subjects as well.

Evidence of teaching effectivenesss: Exercise class market: Applying differentiated instruction to physics tutorials

Article in ETH GLOBE 1/2017: One size does not fit all

Completed projects

Video

Die Veranstaltung Physik II für Materialwissenschaftler (4V+2Ü) wird im HS 2013 als online Selbstlerneinheit (2V) und interaktive Präsenzvorlesung (2V) sowie einem regulären Präsenz-Übungsbetrieb (2Ü) umgestaltet. Die online Vorlesung, welche die physikalischen Grundlagen zu den Themen elektromagnetische Wellen, Atomen, Molekülen und Festkörpern vermittelt, soll nach im HS 2014 eventuell als ETH-MOOC für ein noch zu bestimmendes breiteres Publikum verfügbar gemacht werden.

DownloadProjektantrag (PDF, 65 KB)

Laufzeit: 2013

Förderung: TORQUE

flashcards

Im vorliegenden Projekt wurden 306 Konzeptfragen (MC Fragen samt erläuternden Antworten) zum propädeutischen Unterricht der Physik gesammelt, erstellt, evaluiert und in einer Datenbank abgelegt werden. Diese Konzeptfragen werden als formative Assessment Einheiten in Vorlesungen eingebettet, um einerseits den Studierenden die Möglichkeit der Selbsteinschätzung des eigenen Verständnisses zu bieten. Andererseits können die Dozierenden damit überprüfen, ob Ihre Lernziele auf der gewünschten Stufe erreicht wurden. Die Datenbank wird nach Ablauf des Projektes kontinuierlich erweitert.
Innerhalb der Vorlesung werden die Konzeptfragen als Bestandteil der "Peer Instruction" Methode eingesetzt.

Innovedum Eintrag

DownloadAbschlussbericht (JPEG, 7 KB)

Laufzeit: 2012 - 2013

Förderung: innovedum

FD2

Lernszenario für eine fachdidaktische Veranstaltung mit Fokus auf Handlungskompetenzen.

Innovedum Eintrag

DownloadAbschlussbericht (PDF, 5.5 MB)

Laufzeit: 2010 - 2011

Förderung: innovedum

Podcast

Erstellung eines Podcasts mit einer wöchentlichen Zusammenfassung zu den Vorlesungen Physik I und Physik II. Ausarbeitung eines Handbuchs zur Gestaltung und Produktion solcher Podcasts.

Innovedum Eintrag

DownloadAbschlussbericht (PDF, 147 KB)

Laufzeit: 2009 - 2011

Förderung: Filep

Karussell

Erstellung von 2 Lerneinheiten als Pilotprojekt. Die Lerneinheiten bestehen aus Videosequenzen und fachspezifischen Lernaufgaben. Einsatz der Lerneinheiten in der fächerübergreifenden Veranstaltung Physik I im FS 2009. Die Lernaufgaben sind in Kleingruppen online zu lösen.

Innovedum Eintrag

DownloadAbschlussbericht (PDF, 604 KB)

Laufzeit: 2008 - 2010

Förderung: Filep

Fallende Platte

 In diesem Projekt sollen neue Hilfsmittel zum propädeutischen Physikunterricht erstellt werden, um die Wirkung der Vorlesungsexperimente zu vertiefen und erweitern. Die vom D-PHYS angebotenen Einführungsvorlesungen (8 verschiedene Kurse pro Semester) sind zu einem grossen Teil auf der gut gepflegten reichhaltigen Sammlung von Versuchen aufgebaut. Idealerweise werden diese Demonstrationen zur Vertiefung wiederholt, was aber aus Zeitgründen nur sehr selten gemacht wird. Das vorgeschlagene Projekt greift an diesem Punkt ein: als Ergänzung zu den propädeutischen Physikvorlesungen soll eine web-basierte Sammlung von "virtuellen" Experimenten geschaffen werden, die es den Studierenden erlaubt, sowohl die auf Videos aufgezeichnete Experimente nochmals zu studieren, als auch sich in dazu passenden Simulationsprogrammen ("Physlets") interaktiv mit diesen Versuchen auseinanderzusetzen. (Nicht als Ersatz für Vorlesungsexperimente oder für Praktikumsexperimente). Der erwartete Mehrwert ist vielfältig: (1) Vertiefung des Zusammenhanges zwischen Vorlesungsstoff und Experimenten durch wiederholtes Beobachten des Experimentes (2) Explorieren in Simulationen von physikalischen Gesetzmässigkeiten für Parameterbereiche, die in der Vorlesung nicht realisiert werden können. (3) Einsetzen von Simulationen in den wöchentlichen Übungsaufgaben. (4) Einsatz nicht nur an der ETH, sondern auch möglicherweise an Mittelschulen, und (5) last, but not least, die Freude am Erlernen und Vermitteln der Physik durch zusätzliche, attraktive und effektive Lehrmittel zu erhöhen.

Innovedum Eintrag

Laufzeit: 2005 - 2011

Förderung: Filep

JavaScript has been disabled in your browser